
CSCI 2570
Introduction to

Nanocomputing

Coded Computation II

John E Savage

Lect 19 Coded Computation II CS257 © John E Savage 2

Lecture Topic
This talk is based on Dan Spielman’s paper Highly
Fault-Tolerant Parallel Computation Procs 37th
Annl IEEE Conf. Foundations of Computer Science,
pp. 154-163, 1996.

Spielman’s goal: To realize circuits with unreliable
gates more efficiently than the “von Neumann”
method.

The approach: To replace the repetition code with a
more efficient one.

Lect 19 Coded Computation II CS257 © John E Savage 3

Coded Computation
Goal: To make parallel computation reliable.
Model: Gates fail (compute incorrectly) with
statistical independence and probability ε.
Approach:

Encode step inputs and outputs with same code.
Design step operations so that a fraction ≤ q of outputs are
in error for each step, q =O(ε), with probability p.

Result:
T step computation fails with probability ≤Tp.
Reliable decoder produces corrected result with probability
≤Tp if the code can correct a fraction q of the errors.

Lect 19 Coded Computation II CS257 © John E Savage 4

Relationship to Coded
Communications Model

k characters are encoded into n inputs
n inputs sent through channel
Output is correctable with probability p if the
probability that ≤ e errors occurs is ≤ p where
e is the error correcting capability of the code.

+
e1

+
e2

+
en

x1 y1

x2 y2

xn yn

Lect 19 Coded Computation II CS257 © John E Savage 5

Interpretation of the
Coded Computation Model

Model assumes gates fail independently.
Each step

Operates on encoded input and produces encoded output
in the absence of errors.
Assumes the fraction of inputs in error is ≤ q as is the
fraction of outputs.
Fails to meet above requirement with small probability p.

Steps must not compound errors.
Computation is reliable with probability ≤Tp if inputs
and outputs are reliably encoded and decoded.

Lect 19 Coded Computation II CS257 © John E Savage 6

Interpretation of the
Coded Computation Model

Application to circuits:
Compute circuit with parallel machine.

Lect 19 Coded Computation II CS257 © John E Savage 7

Three Parallel Models of
Computation

Parallel Random Access Model (PRAM)

Hypercube

Mesh

Lect 19 Coded Computation II CS257 © John E Savage 8

The PRAM Model

The PRAM is an abstract programming model
Four types: EREW, ERCW, CREW, CRCW
Can Boolean functions be computed quickly?

How to represent a function?
Can we use concurrency to good advantage?
Is this use of concurrency realistic?

RAM
P

1

RAM
P

2

RAM
P

p

Common Memory

Lect 19 Coded Computation II CS257 © John E Savage 9

Hypercube-Based Machines

Has 2d vertices labeled by binary d-tuples

Has d2d edges. Can be formed by joining two
(d-1)-dimensional hypercubes by edges at
corresponding vertices.

010 011

000 001

110 111

100 101

0111 1111

10 11

00 01

Lect 19 Coded Computation II CS257 © John E Savage 10

Mesh-Based Machines

(4)-mesh
(4,3)-mesh

(4,3,2)-mesh

Lect 19 Coded Computation II CS257 © John E Savage 11

Application to Circuits

Realization of a circuit on EREW PRAM
Reduce fan-out to two without increasing circuit
size by more than a constant factor.
Assign one processor to each gate.
Read left input which is first fan-out.
Read left input which is second fan-out.
Read right input which is first fan-out.
Read right input which is second fan-out.
Write to location reserved for gate output.

Lect 19 Coded Computation II CS257 © John E Savage 12

Simulation of EREW PRAM on
Hypercube

Theorem Each computation cycle of an
EREW PRAM can be simulated on a p-vertex
hypercube with high probability in O(log p)
steps.

Proof See Karlin and Upfal “Parallel Hashing:
An Efficient Implementation of Shared
Memory” JACM vol. 35, no. 4, pp. 876-892,
1988.

Lect 19 Coded Computation II CS257 © John E Savage 13

Normal Algorithms
A normal algorithm on a hypercube is one in which
data moves synchronously across one dimension at
a time.
FFT is example

Input data on vertices at level 0. Computations at
level 1 use exchanges with neighbors differing in
least significant bit. Computations at level 2 are
done after exchanges between neighbors differing
on most significant bit.

00011011
level 0
level 1
level 2

Lect 19 Coded Computation II CS257 © John E Savage 14

Hypercube (HC) Computation

N =2n nodes indexed by binary n-tuples in
H=GF(2n)

Processors at nodes are identical but each
processor has its own instruction sequence.

Lect 19 Coded Computation II CS257 © John E Savage 15

Hypercube (HC) Computation

The ith processor has state si,j e S and
instruction sequence wi,j e S on jth step.

States and instructions are in S.

Successor node state si,j* = f(si,j-1 ,si+d,j-1,wi,j)
on jth step where si,j-1, si+d,j-1 and wi,j are ith
node state, state of neighbor in current
dimension, & ith node instruction.

Lect 19 Coded Computation II CS257 © John E Savage 16

Encoding Data on Hypercube

Encode processor states and instructions with
Reed Solomon code over F.

Let S Œ F, S contains states & instructions, s=|S|

Index HC processor nodes by elements in H Œ F,
|H| = N = 2n.

Lect 19 Coded Computation II CS257 © John E Savage 17

RS Encoding of Data on
Hypercube

sij e S for i e H. Form mj(x) so that mj(i) = sij.
Deg(mj)=N-1 Encode as Sj = (mj(1), mj(2), …,
mj(|F|)). (The set of jth states used to form one
codeword.)

Let Sj
d denote permutation of Sj so that element in ith

position is the neighbor of ith element across the dth
dimension.

wij e S for i e H. Form nj(x) so that nj(i) = wij.
Deg(mj)=N-1 Encode as Wj = (nj(1), nj(2), …, nj(|F|)).
(The set of jth instructions used to form one
codeword.)

Lect 19 Coded Computation II CS257 © John E Savage 18

Computing with Encoded Data

 Recall si,j* = f(si,j-1 ,si+d,j-1,wi,j) on jth step
where f:S3ØS is next-state function of a
processor.

The codewords Sj, Sj
d and Wj contain current

state of a node, its neighbor and its
instruction. We can apply f to components in
S, not those in F.

Lect 19 Coded Computation II CS257 © John E Savage 19

Computing with Encoded Data

To handle values in F not S, extend f to the
interpolation polynomial F(r,s,t), where r,s,t in
F such that for hi,hj,hk in H, F(hi,hj,hk) =
f(si,sj,sk) where si,sj,sk are corresponding
elements of S.

Form

