CSCI 2570 Introduction to Nanocomputing

Coded Computation II

John E Savage

Lecture Topic

- This talk is based on Dan Spielman's paper Highly Fault-Tolerant Parallel Computation Procs 37th Annl IEEE Conf. Foundations of Computer Science, pp. 154-163, 1996.
- Spielman's goal: To realize circuits with unreliable gates more efficiently than the "von Neumann" method.
- The approach: To replace the repetition code with a more efficient one.

- Goal: To make parallel computation reliable.
- Model: Gates fail (compute incorrectly) with statistical independence and probability ε.

Approach:

- Encode step inputs and outputs with same code.
- Design step operations so that a fraction ≤ θ of outputs are in error for each step, θ =O(ε), with probability ρ .

Result:

- T step computation fails with probability ≤Tp.
- Reliable decoder produces corrected result with probability
 ≤Tp if the code can correct a fraction θ of the errors.

Relationship to Coded Communications Model

- k characters are encoded into n inputs
- n inputs sent through channel
- Output is correctable with probability p if the probability that ≤ e errors occurs is ≤ p where e is the error correcting capability of the code.

$$x_n \longrightarrow 0$$
 y_n

Interpretation of the Coded Computation Model

- Model assumes gates fail independently.
- Each step
 - Operates on encoded input and produces encoded output in the absence of errors.
 - Assumes the fraction of inputs in error is ≤ θ as is the fraction of outputs.
 - Fails to meet above requirement with small probability p.
 - Steps must not compound errors.
- Computation is reliable with probability ≤Tp if inputs and outputs are reliably encoded and decoded.

Interpretation of the Coded Computation Model

- Application to circuits:
 - Compute circuit with parallel machine.

Three Parallel Models of Computation

- Parallel Random Access Model (PRAM)
- Hypercube
- Mesh

- The PRAM is an abstract programming model
- Four types: EREW, ERCW, CREW, CRCW
- Can Boolean functions be computed quickly?
 - How to represent a function?
 - Can we use concurrency to good advantage?
 - Is this use of concurrency realistic?

Hypercube-Based Machines

Has 2^d vertices labeled by binary d-tuples

• Has $d2^d$ edges. Can be formed by joining two (d-1)-dimensional hypercubes by edges at corresponding vertices.

- Realization of a circuit on EREW PRAM
 - Reduce fan-out to two without increasing circuit size by more than a constant factor.
 - Assign one processor to each gate.
 - Read left input which is first fan-out.
 - Read left input which is second fan-out.
 - Read right input which is first fan-out.
 - Read right input which is second fan-out.
 - Write to location reserved for gate output.

Simulation of EREW PRAM on Hypercube

Theorem Each computation cycle of an EREW PRAM can be simulated on a *p*-vertex hypercube with high probability in O(log *p*) steps.

Proof See Karlin and Upfal "Parallel Hashing: An Efficient Implementation of Shared Memory" JACM vol. 35, no. 4, pp. 876-892, 1988.

Normal Algorithms

- A normal algorithm on a hypercube is one in which data moves synchronously across one dimension at a time.
- FFT is example

level 2
level 1
level 0

 Input data on vertices at level 0. Computations at level 1 use exchanges with neighbors differing in least significant bit. Computations at level 2 are done after exchanges between neighbors differing on most significant bit.

Hypercube (HC) Computation

- N =2ⁿ nodes indexed by binary n-tuples in H=GF(2ⁿ)
- Processors at nodes are identical but each processor has its own instruction sequence.

Hypercube (HC) Computation

- The i^{th} processor has state $\sigma_{i,j} \in S$ and instruction sequence $w_{i,j} \in S$ on j^{th} step.
 - States and instructions are in S.
- Successor node state $\sigma_{i,j}^* = \phi(\sigma_{i,j-1}, \sigma_{i+d,j-1}, w_{i,j})$ on j^{th} step where $\sigma_{i,j-1}$, $\sigma_{i+d,j-1}$ and $w_{i,j}$ are i^{th} node state, state of neighbor in current dimension, & i^{th} node instruction.

Encoding Data on Hypercube

- Encode processor states and instructions with Reed Solomon code over F.
 - Let S ⊆ F, S contains states & instructions, s=|S|
 - Index HC processor nodes by elements in H ⊆ F,
 |H| = N = 2ⁿ.

RS Encoding of Data on Hypercube

- $\sigma_{ij} \in S$ for $i \in H$. Form $m_j(x)$ so that $m_j(i) = \sigma_{ij}$. Deg $(m_j)=N-1$ Encode as $\Sigma_j = (m_j(1), m_j(2), \ldots, m_j(|F|))$. (The set of j^{th} states used to form one codeword.)
- Let Σ_j^d denote permutation of Σ_j so that element in *i*th position is the neighbor of *i*th element across the *d*th dimension.
- $w_{ij} \in S$ for $i \in H$. Form $n_j(x)$ so that $n_j(i) = w_{ij}$. Deg $(m_j)=N-1$ Encode as $W_j = (n_j(1), n_j(2), ..., n_j(|F|))$. (The set of j^{th} instructions used to form one codeword.)

Computing with Encoded Data

- Recall $\sigma_{i,j}^* = \phi(\sigma_{i,j-1}, \sigma_{i+d,j-1}, w_{i,j})$ on j^{th} step where $\phi: S^3 \rightarrow S$ is next-state function of a processor.
- The codewords Σ_j , Σ_j^d and W_j contain current state of a node, its neighbor and its instruction. We can apply ϕ to components in S, not those in F.

Computing with Encoded Data

• To handle values in F not S, extend ϕ to the interpolation polynomial $\Phi(r,s,t)$, where r,s,t in F such that for h_i,h_j,h_k in H, $\Phi(h_i,h_j,h_k) = \phi(\sigma^i,\sigma^j,\sigma^k)$ where $\sigma^i,\sigma^j,\sigma^k$ are corresponding elements of S.

Form

$$\Phi(r,s,t) = \sum_{i,j,k} \phi(\sigma^i,\sigma^j,\sigma^k) \frac{\prod_{u\neq i}(r-h_t)}{\prod_{u\neq i}(h_i-h_t)} \frac{\prod_{u\neq j}(s-h_t)}{\prod_{u\neq j}(h_i-h_t)} \frac{\prod_{u\neq i}(r-h_t)}{\prod_{u\neq i}(h_i-h_t)}$$