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Lecture Topic
This talk is based on Dan Spielman’s paper Highly 
Fault-Tolerant Parallel Computation Procs 37th 
Annl IEEE Conf. Foundations of Computer Science, 
pp. 154-163, 1996.

Spielman’s goal: To realize circuits with unreliable 
gates more efficiently than the “von Neumann”
method.

The approach: To replace the repetition code with a 
more efficient one.
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Coded Computation
Goal: To make parallel computation reliable.
Model: Gates fail (compute incorrectly) with 
statistical independence and probability ε.
Approach:

Encode step inputs and outputs with same code.
Design step operations so that a fraction ≤ q of outputs are 
in error for each step, q =O(ε), with probability p.

Result:
T step computation fails with probability ≤Tp.
Reliable decoder produces corrected result with probability 
≤Tp if the code can correct a fraction q of the errors.
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Relationship to Coded 
Communications Model

k characters are encoded into n inputs
n inputs sent through channel
Output is correctable with probability p if the 
probability that ≤ e errors occurs is ≤ p where 
e is the error correcting capability of the code.
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Interpretation of the
Coded Computation Model

Model assumes gates fail independently.
Each step 

Operates on encoded input and produces encoded output 
in the absence of errors.
Assumes the fraction of inputs in error is ≤ q as is the 
fraction of outputs.
Fails to meet above requirement with small probability p.  

Steps must not compound errors.
Computation is reliable with probability ≤Tp if inputs 
and outputs are reliably encoded and decoded.
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Interpretation of the
Coded Computation Model

Application to circuits:
Compute circuit with parallel machine.
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Three Parallel Models of 
Computation

Parallel Random Access Model (PRAM)

Hypercube

Mesh
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The PRAM Model

The PRAM is an abstract programming model
Four types: EREW, ERCW, CREW, CRCW
Can Boolean functions be computed quickly?

How to represent a function?
Can we use concurrency to good advantage?
Is this use of concurrency realistic?
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Hypercube-Based Machines

Has 2d vertices labeled by binary d-tuples

Has d2d edges. Can be formed by joining two 
(d-1)-dimensional hypercubes by edges at 
corresponding vertices.
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Mesh-Based Machines

(4)-mesh
(4,3)-mesh

(4,3,2)-mesh
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Application to Circuits

Realization of a circuit on EREW PRAM
Reduce fan-out to two without increasing circuit 
size by more than a constant factor.
Assign one processor to each gate.
Read left input which is first fan-out.
Read left input which is second fan-out.
Read right input which is first fan-out.
Read right input which is second fan-out.
Write to location reserved for gate output.
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Simulation of EREW PRAM on 
Hypercube

Theorem Each computation cycle of an 
EREW PRAM can be simulated on a p-vertex 
hypercube with high probability in O(log p) 
steps.

Proof See Karlin and Upfal “Parallel Hashing: 
An Efficient Implementation of Shared 
Memory” JACM vol. 35, no. 4, pp. 876-892, 
1988. 
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Normal Algorithms
A normal algorithm on a hypercube is one in which 
data moves synchronously across one dimension at 
a time.
FFT is example

Input data on vertices at level 0. Computations at 
level 1 use exchanges with neighbors differing in 
least significant bit. Computations at level 2 are 
done after exchanges between neighbors differing 
on most significant bit.

00011011
level 0
level 1
level 2
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Hypercube (HC) Computation

N =2n nodes indexed by binary n-tuples in 
H=GF(2n)

Processors at nodes are identical but each 
processor has its own instruction sequence. 
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Hypercube (HC) Computation

The ith processor has state si,j e S and 
instruction sequence wi,j e S on jth step.

States and instructions are in S.

Successor node state si,j* = f(si,j-1 ,si+d,j-1,wi,j) 
on jth step where si,j-1, si+d,j-1 and wi,j are ith
node state, state of neighbor in current 
dimension, & ith node instruction.
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Encoding Data on Hypercube

Encode processor states and instructions with 
Reed Solomon code over F. 

Let S Œ F, S contains states & instructions, s=|S|

Index HC processor nodes by elements in H Œ F, 
|H| = N = 2n.
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RS Encoding of Data on 
Hypercube

sij e S for i e H. Form mj(x) so that mj(i) = sij. 
Deg(mj)=N-1 Encode as Sj = (mj(1), mj(2), …, 
mj(|F|)). (The set of jth states used to form one 
codeword.)

Let Sj
d denote permutation of Sj so that element in ith

position is the neighbor of ith element across the dth
dimension. 

wij e S for i e H. Form nj(x) so that nj(i) = wij. 
Deg(mj)=N-1 Encode as Wj = (nj(1), nj(2), …, nj(|F|)). 
(The set of jth instructions used to form one 
codeword.)
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Computing with Encoded Data

 Recall si,j* = f(si,j-1 ,si+d,j-1,wi,j) on jth step 
where f:S3ØS is next-state function of a 
processor.

The codewords Sj, Sj
d and Wj contain current 

state of a node, its neighbor and its 
instruction. We can apply f to components in 
S, not those in F.



Lect 19 Coded Computation II CS257 © John E Savage 19

Computing with Encoded Data

To handle values in F not S, extend f to the 
interpolation polynomial F(r,s,t), where r,s,t in 
F such that for hi,hj,hk in H, F(hi,hj,hk) = 
f(si,sj,sk) where si,sj,sk are corresponding 
elements of S.

Form 


