CSCI 2570 Introduction to Nanocomputing

Coded Computation II

John E Savage

Lecture Topic

- This talk is based on Dan Spielman's paper Highly Fault-Tolerant Parallel Computation Procs 37th Annl IEEE Conf. Foundations of Computer Science, pp. 154-163, 1996.
- Spielman's goal: To realize circuits with unreliable gates more efficiently than the "von Neumann" method.
- The approach: To replace the repetition code with a more efficient one.

Coded Computation

- Goal: To make parallel computation reliable.
- Model: Gates fail (compute incorrectly) with statistical independence and probability ε.
- Approach:
- Encode step inputs and outputs with same code.
- Design step operations so that a fraction $\leq \theta$ of outputs are in error for each step, $\theta=\mathrm{O}(\varepsilon)$, with probability p.
- Result:
- $\quad T$ step computation fails with probability $\leq T p$.
- Reliable decoder produces corrected result with probability $\leq T p$ if the code can correct a fraction θ of the errors.

Relationship to Coded Communications Model

- k characters are encoded into n inputs
- n inputs sent through channel
- Output is correctable with probability p if the probability that \leq e errors occurs is $\leq p$ where e is the error correcting capability of the code.

Interpretation of the Coded Computation Model

- Model assumes gates fail independently.
- Each step
- Operates on encoded input and produces encoded output in the absence of errors.
- Assumes the fraction of inputs in error is $\leq \theta$ as is the fraction of outputs.
- Fails to meet above requirement with small probability p.
- Steps must not compound errors.
- Computation is reliable with probability $\leq T p$ if inputs and outputs are reliably encoded and decoded.

Interpretation of the Coded Computation Model

- Application to circuits:
- Compute circuit with parallel machine.

Three Parallel Models of Computation

- Parallel Random Access Model (PRAM)
- Hypercube
- Mesh

The PRAM Model

- The PRAM is an abstract programming model
- Four types: EREW, ERCW, CREW, CRCW
- Can Boolean functions be computed quickly?
- How to represent a function?
- Can we use concurrency to good advantage?
- Is this use of concurrency realistic?

Hypercube-Based Machines

- Has 2^{d} vertices labeled by binary d-tuples

- Has $d 2^{d}$ edges. Can be formed by joining two (d-1)-dimensional hypercubes by edges at corresponding vertices.

Mesh-Based Machines

Application to Circuits

- Realization of a circuit on EREW PRAM
- Reduce fan-out to two without increasing circuit size by more than a constant factor.
- Assign one processor to each gate.
- Read left input which is first fan-out.
- Read left input which is second fan-out.
- Read right input which is first fan-out.
- Read right input which is second fan-out.
- Write to location reserved for gate output.

Simulation of EREW PRAM on Hypercube

Theorem Each computation cycle of an EREW PRAM can be simulated on a p-vertex hypercube with high probability in $\mathrm{O}(\log p)$ steps.

Proof See Karlin and Upfal "Parallel Hashing: An Efficient Implementation of Shared Memory" JACM vol. 35, no. 4, pp. 876-892, 1988.

Normal Algorithms

- A normal algorithm on a hypercube is one in which data moves synchronously across one dimension at a time.
- FFT is example

- Input data on vertices at level 0 . Computations at level 1 use exchanges with neighbors differing in least significant bit. Computations at level 2 are done after exchanges between neighbors differing on most significant bit.

Hypercube (HC) Computation

- $N=2^{n}$ nodes indexed by binary n-tuples in $H=G F\left(2^{n}\right)$
- Processors at nodes are identical but each processor has its own instruction sequence.

Hypercube (HC) Computation

- The $i^{\text {th }}$ processor has state $\sigma_{i, j} \in S$ and instruction sequence $w_{i, j} \in S$ on $j^{\text {th }}$ step.
- States and instructions are in S.
- Successor node state $\sigma_{i, j}{ }^{*}=\phi\left(\sigma_{i, j-1}, \sigma_{i+d, j-1}, W_{i, j}\right)$ on $j^{\text {th }}$ step where $\sigma_{i, j-1}, \sigma_{i+d, j-1}$ and $w_{i, j}$ are $i^{\text {th }}$ node state, state of neighbor in current dimension, \& $i^{\text {th }}$ node instruction.

Encoding Data on Hypercube

- Encode processor states and instructions with Reed Solomon code over F.
- Let $S \subseteq F, S$ contains states \& instructions, $s=|S|$
- Index HC processor nodes by elements in $H \subseteq F$, $|H|=N=2^{n}$.

RS Encoding of Data on Hypercube

- $\sigma_{i j} \in S$ for $i \in H$. Form $m_{i}(x)$ so that $m_{j}(i)=\sigma_{i j}$. Deg $\left(m_{j}\right)=N$-1 Encode as $\Sigma_{j}=\left(m_{i}(1), m_{j}(2), \ldots\right.$, $\left.m_{i}(|F|)\right)$. (The set of $j^{\text {th }}$ states used to form one codeword.)
- Let Σ_{j}^{d} denote permutation of Σ_{j} so that element in i th position is the neighbor of ith element across the d th dimension.
- $w_{i j} \in S$ for $i \epsilon H$. Form $n_{j}(x)$ so that $n_{j}(i)=w_{i j}$.
$\mathrm{Deg}^{i}\left(m_{j}\right)=N-1$ Encode as $W_{j}=\left(n_{j}(1), n_{j}(2), \ldots, n_{j}(|F|)\right)$. (The set of $j^{\text {th }}$ instructions used to form one codeword.)

Computing with Encoded Data

- Recall $\sigma_{i, j}{ }^{*}=\phi\left(\sigma_{i, j-1}, \sigma_{i+d, j-1}, W_{i, j}\right)$ on $j^{\text {th }}$ step where $\phi: S^{3} \rightarrow S$ is next-state function of a processor.
- The codewords $\Sigma_{j}, \Sigma_{j}^{\mathrm{d}}$ and W_{j} contain current state of a node, its neighbor and its instruction. We can apply ϕ to components in S, not those in F.

Computing with Encoded Data

- To handle values in F not S, extend ϕ to the interpolation polynomial $\Phi(r, s, t)$, where r, s, t in F such that for h_{j}, h_{j}, h_{k} in $H, \Phi\left(h_{i}, h_{j}, h_{k}\right)=$ $\phi\left(\sigma^{i}, \sigma^{j}, \sigma^{k}\right)$ where $\sigma^{i}, \sigma^{j}, \sigma^{k}$ are corresponding elements of S.
- Form

$$
\Phi(r, s, t)=\sum_{i, j, k} \phi\left(\sigma^{i}, \sigma^{j}, \sigma^{k}\right) \frac{\prod_{u \neq i}\left(r-h_{t}\right)}{\prod_{u \neq i}\left(h_{i}-h_{t}\right)} \frac{\prod_{u \neq j}\left(s-h_{t}\right)}{\prod_{u \neq j}\left(h_{i}-h_{t}\right)} \frac{\prod_{u \neq i}\left(r-h_{t}\right)}{\prod_{u \neq i}\left(h_{i}-h_{t}\right)}
$$

